
UCRL-MA-147996-Rev-1

SLURM: Simple Linux Utility for
Resource Management

M. Jette, C. Dunlap, J. Garlick, M. Grondona

July 8,2002

US. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

SLURM: Simple Linux Utility for Resource
Management

Moe Jette, Chris Dunlap, Jim Garlick, Mark Grondona
{ jette,cdunlap,garlick,mgrondona}@llnl.gov

July 8, 2002

Abstract

Simple Linux Utility for Resource Management (SLURM) is an open
source, fault-tolerant, and highly scalable cluster management and job
scheduling system for Linux clusters of thousands of nodes. Components
include machine status, partition management, job management, schedul-
ing and stream copy modules. The design also includes a scalable, general-
purpose communication infrastructure. This paper presents a overview of
the SLURM architecture and functionality.

1

mailto:jette,cdunlap,garlick,mgrondona}@llnl.gov

1 Overview
SLURM' (Simple Linux Utility for Resource Management) is a resource man-
agement system suitable for use on Linux clusters, large and small. After
surveying[l] resource managers available for Linux and finding none that were
simple, highly scalable, and portable to different cluster architectures and in-
terconnects, the authors set out to design a new system.

The result is a resource management system with the following general char-
acteristics:

0 Simplicity: SLURM is simple enough to allow motivated end users to
understand its source code and add functionality. The authors will avoid
the temptation to add features unless they are of general appeal.

0 Open Source: SLURM is available to everyone and will remain free; its
source code is distributed under the GNU General Public License.

0 Portability: SLURM is written in the C language, with a GNU autoconf
configuration engine. While initially written for Linux, other UNIX-like
operating systems should be easy porting targets.

0 Interconnect independence: Initially, SLURM supports UDP/IP based
communication and the Quadrics Elan3 interconnect. Adding support
for other interconnects is straightforward. Users select the supported in-
terconnects at compile time via GNU autoconf.

0 Scalability: SLURM is deslgned for scalability to clusters of thousands
of nodes. Prototypes of SLORM components thus far developed indicate
that the controller for a cluster with 16k nodes will occupy on the order
of 1 MB of memory and performance will be excellenk2

0 Fault tolerance: SLURM can handle a variety of failure modes without
terminating workloads, including crashes of the node running the SLURM
controller.

0 Secure: SLURM employs crypto technology to authenticate users to ser-
vices and services to services. A Kerberos v5 infrastructure can be utilized
if available. SLURM does not assume that its networks are physically
secure, but does assume that the entire cluster is within a single adminis-
trative domain with a common user base across the entire cluster.

0 System administrator friendly: SLURM is configured with a few simple
configuration files and minimizes distributed state. Its interfaces are us-
able by scripts and its behavior is highly deterministic.

'A tip of the hat to Matt Groening and creators of Futurama, where Slurm is the highly
addictive soda-like beverage made from worm excrement.

that a%ux cluster with about 1000 nodes will be available for testing

2

1.1 What is SLURM?
As a cluster resource manager, SLURM has three key functions. First, it al-
locates exclusive and/or non-exclusive access to resources (compute nodes) to
users for some duration of time so they can perform work. Second, it provides
a framework for starting, executing, and monitoring work (normally a parallel
job) on the set of allocated nodes. Finally, it arbitrates conflicting requests for
resources by managing a queue of pending work.

Users interact with SLURM through three command line utilities: srun
for submitting a job for execution and optionally controlling it interactively;
scancel for early termination of a job; and squeue for monitoring job queues
and basic system state.

System administrators perform privileged operations through an additional
command line utility: scontrol.

External schedulers and meta-batch systems can submit jobs to SLURM, or-
der its queues, and monitor SLURM state through an application programming
interface (API).

Compute nodes simply run a slurmd daemon (similar to a remote shell dae-
mon) to export control to SLURM. The central controller daemon, slurmctld
maintains the global state and directs operations.

1.2 What SLURM is Not
SLURM is not a sophisticated batch system. Its default scheduler implements
First-In First-Out (FIFO) with backfill and is not intended to directly implement
complex site policy. SLURM do& however provide a sufficiently sophisticated
API for an external scheduler or meta-batch system to order its queues based
upon site policy.

SLURM clusters are space shared with different jobs executing concurrently
on (typically) different nodes. Multiple jobs may be allocated the same node(s)
if the administrator has configured nodes for shared access and/or the job has re-
quested shared resources for improved responsiveness. SLURM does not perform
gang scheduling (time-slicing of parallel jobs). However, the explicit preemp-
tion and later resumption of a job under the direction of an external scheduler
may be supported in the future. At present an external scheduler may submit,
signal, hold, reorder and terminate jobs via the API.

SLURM is not a meta-batch system like Globus or DPCS (Distributed Pro-
duction Control System). SLURM supports resource management across a sin-
gle cluster.

SLURM is not a comprehensive cluster administration or monitoring pack-
age. While SLURM knows the state of its compute nodes, it makes no attempt
to put this information to use in other ways, such as with a general purpose event
logging mechanism or a back-end database for recording historical state. It is
expected that SLURM will be deployed in a cluster with other tools performing
these functions.

3

scontrol s lurmct Id

slurmd slunnd slurmd

Figure 1: SLURM Architecture

Figure 2: SLURM Entities

1.3 Architecture
As depicted in Figure 1, SLURM consists of a slurmd daemon running on
each compute node, a central slurmctld daemon running on a management
node (with optional fail-over twin), and a four command line utilities: srun
scancel squeue and scontrol which can run anywhere in the cluster. A
scalable communications library ties these components together.

The entities managed by these SLURM daemons include nodes, the compute
resource in SLURM, partitaons, which group nodes into logical disjoint sets, jobs,
or allocations of resources assigned to a user for a specified amount of time, and
job steps, which are sets of parallel tasks within a job. Jobs are created within
partitions until the resources (nodes) within that partition are exhausted. Once
a job is assigned to a set of nodes, the user will be able to initiate parallel work in
the form of job steps in any configuration within the allocation. For instance a
single job step may be started which utilizes all nodes within the job, or several

4

NodeManager 1 PartitionManager 1 JobManager 1

-% User: snm

Figure 3: SLURM Architecture - Subsystems

job steps may each use a portion of the allocation.
Figure 2 further illustrates the interrelation of these entities as they are

managed by SLURM. The diagram shows a group of compute nodes split into
two partitions. Partition 1 is running One job, with one job step utilizing the
full allocation within that job. The job in Partition 2 has only one job step
using half of the original job allocation.

Figure 3 exposes the subsystems that are implemented within the slurmd
and slurmctld daemons. These subsystems are explained in more detail below.

1.3.1 Slurmd

The slurmd running on each compute node can be compared to a remote shell
daemon: it waits for work, executes the work, returns status, then waits for
more work. It also asynchronously exchanges node and job status with the
controller. It never communicates with other compute nodes and the only job
information it has at any given time pertains to its currently executing jobs.

slurmd reads its configuration from a file: /etc/slurmd. conf and has three
major components:

0 Machine and Job Status Service: Respond to controller requests for ma-
chine and job state information, and send asynchronous reports of some
state changes (e.g. slurmd startup) to the controller. Job status includes
CPU and real-memory consumption information for all processes including
user processes, system daemons, and the kernel.

5

0 Remote Execution: Start, monitor, and clean up after a set of processes,
typically belonging to a parallel job, as dictated by the controller or an
srun or scancel process. Starting a process may include executing a pro-
log script, setting process limits, setting real and effective user id, setting
environment variables, setting working directory, allocating interconnect
resources, setting corefile paths, initializing the Stream Copy Service, and
managing process groups. Terminating a process may include terminating
all members of a process group and executing an epilog script.

Stream Copy Service: Allow handling of stderr, stdout, and stdin of remote
tasks. Job input may be redirected from a file or files, a srun process, or
/dev/null. Job output may be saved into local files or sent back to the
srun command. Regardless of the location of stdout/err, all job output
will be locally buffered to avoid blocking local tasks.

0 Job Control Allow asynchronous interaction with the Remote Execution
environment by propagating signals or explicit job termination requests
to any set of locally managed processes.

1.3.2 Slurmctld

Most SLURM state information exists in the controller, slurmctldwhen slurmctld
starts, it reads its configuration from a file: /etc/slurmctld.conf. It also
can read additional state information from a checkpoint file left by a previous
slurmctld'slurmctld runs in either master or standby mode, depending on the
state of its fail-over twin, if any.

slurmctld performs several t&ks simultaneously:

0 Node Manager: Monitors the state of each node in the cluster. It polls
slurmdS for status periodically and receives state change notifications from
slurmd6 asynchronously. It insures that nodes have the prescribed config-
uration before being considered available for use.

0 Partition Manager: Groups nodes into non-overlapping sets called parti-
tions. Each partition can have associated with it various job limits and
access controls. The partition manager also allocates nodes to jobs based
upon node and partition states and configurations. Requests to initiate
jobs come from the Job Manager. s con t ro l may be used to administra-
tively alter node and partition configurations.

0 Job Manager: Accepts user job requests and (if applicable) places pending
jobs in a priority ordered queue. By default the job priority will be a simple
age based algorithm providing FIFO ordering. An interface is provided
for an external scheduler to establish a job's initial priority and API's
are available to alter this priority through time for customers wishing a
more sophisticated scheduling algorithm. The job manager is awakened
on a periodical basis and whenever there is a change in state that might
permit a job to begin running, such as job completion, job submission,

6

partition up transition, node up transition, etc. The job manager then
makes a pass through the priority ordered job queue. The highest priority
jobs for each partition are allocated resources as possible. As soon as an
allocated failure occurs for any partition, no lower-priority jobs for that
partition are considered for initiation. After completing the scheduling
cycle, the job manager’s scheduling thread sleeps. Once a job has been
allocated resources, the job manager transfers necessary state information
to those nodes and commences its execution. Once executing, the job
manager will monitor and record the job’s resource consumption (CPU
time used, CPU time allocated, and real memory used) in near real-time.
When the job manager detects that all nodes associated with a job have
completed their work, it initiates cleanup and performs another scheduling
cycle as described above.

1.3.3 Command Line Utilities

The command line utilities are the user interface to SLURM functionality. They
offer users access to remote execution and job control. They also permit admin-
istrators to dynamically change the system configuration. The utilities read the
global configuration file - /etc/slurm. conf - to determine the host and port
for slurmctld requests, and the port for slurmd requests.

0 scancel: Cancel a running or a waiting job, subject to authentication.
This command can also be used to sent an arbitrary signal to all processes
associated with a job on all nodes.

0 scontrol: Perform privilege1 administrative commands such as draining
a node or partition in preparation for maintenance. It must be run as the
user root.

0 squeue: Display the queue of running and waiting jobs. squeue can also
display a summary of partition and node information.

0 srun: Allocate resources, submit jobs to the SLURM queue, and initiate
parallel tasks. Every set of executing parallel tasks will have an associated
srun process which is managing them. Jobs may be submitted for later
execution (e.g. batch), in which case srun will terminate after job submis-
sion. Jobs may also be submitted for interactive execution, where srun
keeps running to shepherd the running job. In this case, srun negotiates
connections with remote slurmd’s for job initiation and to get standard
output and error, forward &din3, and respond to signals from the user.
srun may also be instructed to allocate a set of resources and spawn a
shell with access to those resources.

’srun command line options select the stdin handling method such as broadcast to all
tasks, or send only to task 0.

7

1.3.4 Communications Layer

SLURM uses the LLNL developed communications library known as Mongo4.
Mongo’s API closely resembles Berkeley sockets. It is built upon the UDP pro-
tocol with algorithms providing better performance than TCP, particularly in
the event of high network congestion or a high failure rate in message transmis-
sion.

Need more details and a reference here.

1.3.5 Security

SLURM has a simple security model: Any user of the cluster may submit par-
allel jobs to execute and cancel his own jobs. Any user may view all SLURM
configuration and state information. Only the user roo t may modify SLURM
configuration or cancel any job. If permission to modify SLURM configura-
tion without a root account is required, set-uid programs may be used to grant
specific permissions to specific users.

The secret key is readable by Totalview unless the executable file is not read-
able, but that prevents proper Totalview operation. For an alternative see authd
documentation at h t tp : //www.cs.berkeley.edu/ bnclauthdl . Here are some
benefits:

e With authd, command line utilities do not need to be m i d or sgid.

e Because of the above, users could compile their own utilities against the
SLURM A P I and actually use them

e Other utilities may be able t6 leverage off authd because the authentication
mechanism is not embedded within S L URM

Drawbacks:

Authd must be running on every node

e Need to worry about how Mongo will interact with authd

e W e would still need to manage a cluster-wide public/private key pair and
assure they key has not been compromised.

Trust between SLURM components and utilities is established through use
of communication-layer encryption. A shared key, group accessible from every
node in the cluster, will be used to initialize the mongo communications layer.
Only components and utilities with access to this shared secret will be able to
communicate in the SLURM world. Unprivileged users will not have access to
this key, so SLURM utilities will need to be installed setgid. If a utility is able to
communicate with another SLURM component, the information that the utility
is presenting may be trusted.

41dentify location of Mongo documentation here

8

http://www.cs.berkeley.edu

When resources are allocated to a user by the controller, a “job credential”
is generated by combining the user id, the list of resources allocated (nodes
and processors per node), and the credential lifetime. This “job credential”
is encrypted with a slurmctld private key. This credential is returned to the
requesting agent along with the allocation response, and must be forwarded to
the remote slurmd’s on job initiation. A slurmd may decrypt this credential
with the slurmctld’s public key to quickly verify that the user may access
resources on the local node.

Both the slurmd and slurmctld will also support the use of Pluggable
Authentication Modules (PAM) for additional authentication on top of commu-
nication encryption and job credentials. In particular, if a job credential is not
forwarded to slurmd on a job initiation request, slurmd may fall through to a
PAM module, which may authorize the request based upon methods such as a
flat list of users or an explicit request to the SLURM controller. slurmctld may
use PAM modules to authenticate users based upon UNIX passwords, Kerberos,
or any other method that may be represented in a PAM module.

Access to some partitions is restricted via a ‘‘ partition key”. This may be
used, for example, to provide specific external schedulers with exclusive access
to partitions. Individual users will not be permitted to directly submit jobs to
such a partition, which would prevent the external scheduler from effectively
managing it. This key will be generated by slurmctld and provided to user
roo t via API upon request. The external scheduler, which must run as user root
to submit jobs on the behalf of other users, will submit jobs as the appropriate
user using this ‘‘ partition key”.

1.4 Example: Executing a Batch Job
A user wishes to run a job in batch mode, in which srun will return immediately
and the job will execute ‘[in the background” when resources are available.

The job is a two-node run of mping, a simple MPI application. The user
submits the job:

srun --batch --nodes 2 --nprocs 2 mping 1 1048576

The srun command authenticates the user to the controller and submits the
job request. The request includes the srun environment, current working direc-
tory, and command line option information. By default, stdout and stderr are
sent to files in the current working directory and stdin is copied from /dev/null.

The controller consults the partition manager to test whether the job will
will ever be able to run. If the user has requested a non-existent partition, more
nodes than are configured in the partition, a non-existent constraint, etc., the
partition manager returns an error and the request is discarded. The failure is
reported to srun which informs the user and exits:

srun: request will never run

9

On successful submission, the controller assigns the job a unique sEum id,
adds it to the job queue and returns the slurm id to srun which reports this to
user and exits, returning success to the user’s shell:

srun: Job 42 has been submitted

The controller awakens the job manager which tries to run jobs starting at
the head of the job queue. It finds job 42 and makes a successful request to
the partition manager to allocate two nodes from the default (or requested)
partition: dev6 and dev7.

The job manager then sends a request to the slurmd on the first node in
the job dew6 to initiate a srun of the user’s command line5. The job manager
also sends a copy of the environment, current working directory, stdout and
stderr location, along with any other options. Additional environment variables
are appended to the user’s environment before it is sent to the remote slurmd
detailing the job’s resources, such as the slurm job id (42) and the allocated
nodes (dev[6- 7h.

The remote slurmd establishes the new environment and executes the job
script as the submitting user. The srun within the job script detects that
it is running with allocated resources from the presence of the SLURMJOBID
environment variable. srun connects to slurmctld to request a “job step”
to run on all nodes of the current job. slurmctld validates the request and
replies with a job credential and switch resources. srun then contacts slurmd’s
running on both dev6 and dev7, passing the job credential, environment, current
working directory, command path, and arguments, and interconnect information.
The slurmd’s verify the valid job credential, connect stdout and stderr back to
srun, establish the environment, and execute the command as the submitting
user.

Unless instructed otherwise by the user, stdout and stderr will be copied to
files in the current working directory by srun:

The user may examine the output files at any time if they live in a directory
that is globally accessible. In this example slurm-42. out would contain:

1 pinged 0: 1 bytes 5.38 uSec 0.19 MB/s
1 pinged 0: 2 bytes 5.32 uSec 0.38 MB/s
1 pinged 0: 4 bytes 5.27 uSec 0.76 MB/s
1 pinged 0: 8 bytes 5.39 uSec 1.48 MB/s

1 pinged 0: 1048576 bytes 4682.97 uSec 223.91 MB/s
. . .

5Had the user submitted a job script, this script would be initiated on the first node of the
job

10

When the tasks complete execution srun is notified by slurmd of each task’s
exit status. srun reports job step completion to the job manager and exits.
The job manager receives an exit status for the job script and begins cleanup.
It directs the slurmd’s formerly assigned to the job to run the job epilog if job
epilogs have been configured. Finally, the job manager releases the resources
allocated to job 42 and updates the job status to complete. The records of a
job’s existence will eventually be purged.

1.5 Example: Executing an Interactive Job
A user wishes to run the same job in interactive mode, in which srun will
block while the job executes and stdout/stderr of the job will be copied onto
stdoutlstderr of srun.

The user submits the job, this time requesting an interactive run:

srun --nodes 2 --nprocs 2 mping 1 1048576

The srun command authenticates the user to the controller and makes a
request for an allocation and job step. The job manager responds with a list
of nodes, a job credential, and interconnect resources on successful allocation.
If resources are not immediately available, the request will terminate or block
depending upon user option.

If the request is successful, srun forwards the job run request to the assigned
slurmd ’s in the same manner as the srun in the batch job script. In this case,
the user sees the program output on stdout of srun:

1 pinged 0: 1 bytes 5.38 uSec 0.19 MB/s
I pinged 0: 2 bytes 5.32 uSec 0.38 MB/s
1 pinged 0: 4 bytes 5.27 uSec 0.76 MB/s
1 pinged 0: 8 bytes 5.39 uSec 1.48 MB/s

I pinged 0: 1048576 bytes 4682.97 uSec 223.91 MB/s
...

When the job terminates, srun receives an EOF on each stream and closes
it, then receives the job exit status from each slurmd. The srun process notifies
slurmctld that the job is complete and terminates. The controller contacts all
slurmd’s allocated to the terminating job and issues a request to run the job
epilog, then releases the job’s resources.

If a signal is received by srun while the job is executing (for example, a
SIGINT resulting from a Control-C), it is sent to each slurmd which terminates
the individual tasks and reports this to the job status manager, ‘which cleans
up the job.

2 Controller Design
The controller is modular and multi-threaded. Independent read and write locks
will be provided for the various data structures for scalability. The controller

11

state will be saved to disk immediately upon change for fault tolerance. The
controller will include the following subsystems:

0 Node Manager: Monitors the state of each node in the cluster. It polls
slurmds for status periodically and receives state change notifications from
slurmds asynchronously. It insures that nodes have the prescribed config-
uration before being considered available for use.

0 Partition Manager: Groups nodes into non-overlapping sets called parti-
tions. Each partition can have associated with it various job limits and
access controls. The partition manager also allocates nodes to jobs based
upon node and partition states and configurations. Requests to initiate
jobs come from the Job Manager. scontrol may be used to administra-
tively alter node and partition configurations.

0 Job management: Accept, initiate, monitor, delete and otherwise manage
the state of all jobs in the system. This includes prioritizing pending work.

Each of these subsystems is described in detail below.

2.1 Node Management
The node manager will monitor the state of nodes. Node information monitored
includes:

0 Count of processors on the pode

0 Size of real memory on the iode

0 Size of temporary disk storage

0 State of node (RUN, IDLE, DRAINED, etc.)

0 Weight (preference in being allocated work)

0 Feature (arbitrary description)

0 IP address

The SLURM administrator could specify a list of system node names us-
ing a regular expression (e.g. "NodeName=linux[OOl-5121 CPUs=4 RealMem-
ory= 1024 TmpDisk=4096 Weight=4 Feature=Linux"). These values for CPUs,
RealMemory, and TmpDisk would be considered the minimal node configuration
values which are acceptable for the node to enter into service. The slurmd will
register whatever resources actually exist on the node and this will be recorded
by the Node Manager. Actual node resources will be checked on slurmd ini-
tialization and periodically thereafter. If a node registers with less resources
than configured, it will be placed in DOWN state and the event will be logged.
Otherwise the actual resources reported will be recorded and possibly used as a

12

basis for scheduling (e.g. if the node has more RealMemory than recorded in the
configuration file, the actual node configuration may be used for determining
suitability for any application, alternately the data in the configuration file may
be used for possibly improved performance). Note the regular expression node
name syntax permits even very large heterogeneous clusters to be described in
only a few lines. In fact, a smaller number of unique configurations can provide
SLURM with greater efficiency in scheduling work.

The weight is used to order available nodes in assigning work to them.
In a heterogeneous cluster, more capable nodes (e.g. larger memory or faster
processors) should be assigned a larger weight. The units are arbitrary and
should reflect the relative value of each resource. Pending jobs will be assigned
the least capable nodes (i.e. lowest weight) which satisfy their requirements.
This will tend to leave the more capable nodes available for those jobs requiring
those capabilities.

The feature is an arbitrary string describing the node, such as a particular
software package, file system, or processor speed. While the feature does not
have a numeric value, one might include a numeric value within the feature
name (e.g. ”1200MHz” or ”16GBSwap”). If the nodes on the cluster have
disjoint features (e.g. different ”shared” file systems), one should identify these
as features (e.g. ”FSl”, ”FS2”, etc.). Programs may then specify that all
nodes allocated to it should have the same feature, but that any of the specified
features is acceptable (e.g. ”Feature = FSlIFS21FS3”).

Node records are kept in an array with hash table lookup. If nodes are
given names containing sequence numbers (e.g. ”1x01” , ”lxO2”, etc.), the hash
table will permit specific node remrds to be located very quickly and this is our
recommended naming convention for larger clusters.

An API is available to view any of this information and to update some
node information (e.g. state). APIs designed to return SLURM state informa-
tion will permit the specification of a time-stamp. If the requested data has not
changed since the timestamp specified by the application, the application’s cur-
rent information need not be updated. The API will return a brief ”no-change”
response rather than returning relatively verbose state information. Changes
in node configurations (e.g. node count, memory, etc.) or the nodes actually
in the cluster should be reflected in the SLURM configuration files. Updated
configuration files may be read without disrupting jobs that are currently exe-
cuting.

2.2 Partition Management
The partition manager will identify groups of nodes to be used for execution of
user jobs. One might consider this the actual resource scheduling component.
Data to be associated with a partition will include:

Name

Access controlled by key granted to user root (to support external sched-
ulers)

13

0 List of associated nodes (may use regular expression)

0 State of partition (UP or DOWN)

0 Maximum time limit for any job

0 Maximum nodes allocated to any single job

0 List of groups permitted to use the partition (defaults to ALL)

0 Shared access (YES, NO, or FORCE)

0 Default partition (if not specified in job request)

It will be possible to alter most of this data in real-time in order to effect
the scheduling of pending jobs (currently executing jobs would continue). This
information can be confined to the SLURM control machine for better scalabil-
ity. It would be used by the Job Manager (and possibly an external scheduler),
which either exist only on the control machine or communicate only with the
control machine.

The nodes in a partition may be designated for exclusive or non-exclusive
use by a job. A shared value of ”YES’ indicates that jobs may share nodes
upon request. A shared value of ”NO” indicates that jobs are always given ex-
clusive use of allocated nodes. A shared value of ”FORCE” indicates that jobs
will never be ensured exclusive access to nodes, but SLURM may initiate mul-
tiple jobs on the nodes for high system utilization and responsiveness. In this
case, job requests for exclusive node access will not be honored. Non-exclusive
access may negatively impact thesperformance of parallel jobs or cause them to
fail upon exhausting shared reso&ces (e.g. memory or disk space). However,
shared resources should improve overall system utilization and responsiveness.
The proper support of shared resources, including enforcement of limits on these
resources, entails a substantial amount effort which we are not presently plan-
ning to address. However, we have designed SLURM so as to not preclude the
addition of such a capability at a later time if so desired. Future enhancements
could include constraining jobs to a specific CPU count or memory size within
a node, which could be used to effectively space-share individual node. The
partition manager will allocate nodes to pending jobs upon request by the job
manager.

Submitted jobs can specify desired partition, CPU count, node count, task
count, the need for contiguous nodes assignment, and (optionally) an explicit
list of nodes. Nodes will be selected so as to satisfy all job requirements. For
example a job requesting four CPUs and four nodes will actually be allocated
eight CPUs and four nodes in the case of all nodes having two CPUs each. The
submitted job may have an associated “partition key”, and by virtue of this
can be granted access to specific partitions. The request may also indicate node
configuration constraints such as minimum real memory or CPUs per node,
required features, etc.

Nodes are selected for possible assignment to a job based upon it’s configu-
ration requirements (e.g. partition specification, minimum memory, temporary

14

disk space, features, node list, etc.). The selection is refined by determining
which nodes are up and available for use. Groups of nodes are then considered
in order of weight, with the nodes having the lowest weight preferred. Finally
the physical location of the nodes is considered.

Bit maps are used to indicate which nodes are up, idle, associated with
each partition, and associated with each unique configuration. This technique
permits scheduling decisions to normally be made by performing a small number
of tests followed by fast bit map manipulations. If so configured, a job’s resource
requirements would be compared against the (relatively small number of) node
configuration records, each of which has an associated hit map. Usable node
configuration bitmaps would be ANDed with the selected partitions bit map
ANDed with the UP node bit map and possibly ANDed with the IDLE node
bit map. This method can eliminated tens of thousands of node configuration
comparisons that would otherwise be required in large heterogeneous clusters.

The actual selection of nodes for allocation to a job is currently tuned for the
Quadrics interconnect. This hardware supports hardware message broadcast,
but only if the nodes are contiguous. If a job is not allocated contiguous nodes,
a slower software based multi-cast mechanism is used. Jobs will be allocated
continuous nodes to the extent possible (in fact, contiguous node allocation can
he required by a job if so specified at submission time). If contiguous nodes
can not be allocated to a job, it will be allocated resources from the minimum
number of sets of contiguous nodes possible. If multiple sets of contiguous nodes
can be allocated to a job, the one which most closely fits the job’s requirements
will be used. This technique will leave the largest continuous sets of nodes intact
for jobs requiring them.

The partition manager will build a list of nodes to satisfy a job’s request.
It will also cache the IP addresses of each node and provide this information to
srun at job initiation time for improved performance.

The failure of any node to respond to the partition manager will only effect
jobs associated with that node. In fact, jobs may indicate they should continue
executing even if nodes allocated to it cease responding. In this case, the job
will need to provide for its own fault-tolerance. All other jobs and nodes in the
cluster will continue to operate after a node failure. No additional work will
be allocated to the failed node and it will be pinged periodically to determine
when it has been restored to serviced.

A sample configuration file follows.

Sample /etc/SLURM.conf
Author: John Doe
Date: 11/06/2001

ControlMachine=1x0001
BackupController=lxOOO2

Node Configurations

15

NodeName=DEFAULT TmpDisk=l6384
NodeName=lx COO0 1-00021 State=DRAINED
NodeName=1x[0003-8000] CPUs=16 RealMemory=2048 Weight=16
NodeName=lx[8001-9999] CPUs=32 RealMemory=4096 Weight=40 Feature=1200MHz

Partition Configurations

Part it ionName=DEFAULT MaxTime=30 MaxNodes=2
PartitionName=login Nodes=1x~0001-00021 State=DOWN
PartitionName=debug Nodes=1x[0003-0030] State=UP Default=YES
PartitionName=class Nodes=1x[0031-0040] AllowGroups=students,teachers
PartitionName=batch Nodes=1x~0041-99991 MaxTime=UNLIMITED MaxNodes=4096 Key=YES

Don’t schedule work here

2.3 Job Manager
There are a multitude of parameters associated with each job

Job name

User ID

Job ID

Working Directory

Partition

Priority

Node constraints (processors, memory, features, etc.)

and many more

Job records have an associated hash table for rapidly locating specific records.
They also have bit maps of requested and/or allocated nodes (as described
above).

The core functions to be supported by the job manager include:

Request resource request (may be queued or test for availability)

Reset priority of jobs (for external scheduler to order queue)

Status job (including node list, memory and CPU use data)

Signal job (send arbitrary signal to all processes associated with a job)

Terminate job (remove all processes)

Preempt/resume job (future)

Checkpoint/restart job (future)

16

0 Change node count of running job (could fail if insufficient resources are
available, future)

Jobs will be placed in a priority ordered queue and allocated nodes as se-
lected by the Partition Manager. SLURM implements a very simple scheduling
algorithm, namely FIFO. An attempt will be made to schedule pending jobs on
a periodic basis and whenever any change in job, partition, or node state might
permit the scheduling of a job. All nodes allocated to a job will remain so until
all processes associated with that job terminate. If a node allocated to a job
fails, the job may either continue execution or terminate depending upon its
configuration.

We are well aware this scheduling algorithm will not satisfy the needs of many
customers and provide the means for establishing other scheduling algorithms.
Before a newly arrived job is placed into the queue, it is assigned a priority that
may be established by an administrator defined program. SLURM APIs permit
an external entity to alter the priorities of jobs at any time to re-order the
queue as desired. The Maui Scheduler' is one example of an external scheduler
suitable for use with SLURM.

Another scheduler that we plan to offer with SLURM is DPCS7. DPCS
has flexible scheduling algorithms that suit our needs well and provides the
scalability required for this application. Most of the resource accounting and
some of the job management functions presently within DPCS would be moved
into the proposed SLURM Job Management component. DPCS will require
some modification to operate within this new, richer environment and the DPCS
Central Manager requires porting. to Linux.

The DPCS writes job accounting records to Unix files. Presently, these are
moved to a machine with the Sybase database. This data can be accessed via
command-line and web interfaces with Kerberos authentication and authoriza-
tion. We are not contemplating making this database software available through
SLURM, but might consider writing this data to an open source database if so
desired.

System specific scripts can be executed prior to the initiation of a user job
and after the termination of a user job (e.g. prolog and epilog). These scripts are
executed as user roo t and can be used to establish an appropriate environment
for the user (e.g. permit logins, disable logins, terminate "orphan" processes,
etc.). An API for all functions would be developed initially, followed by a
command-line tool utilizing the API.

The job manager will collect resource consumption information (CPU time
used, CPU time allocated, and real memory used) associated with a job from
the slurmd daemons. When a job approaches its time limit (as defined by wall-
clock execution time) or an imminent system shutdown has been scheduled,
the job will be terminated. The actual termination process is to notify slurmd
daemons on nodes allocated to the job of the termination request along with a

http: //mauischeduler .sourceforge.net /
7http://www.llnl.gov/icc/lc/dpcs/dpcs~ove~iew.ht~l

17

http://sourceforge.net

time period in which to complete the termination. The slurmd job termination
procedure, including job signaling, is described in the slrumd section.

If for some reason, there are non-killable processes associated with the job,
nodes associated with those processes will be drained and the other nodes re-
linquished for other uses.

One may think of a “job” as described above as an allocation of resource
and a user script rather than a collection of parallel tasks. For that, the script
will execute srun commands to initiate the parallel tasks or “job steps”. The
job may include multiple job steps, executing sequentially and or concurrently
either on separate or overlapping nodes. Job steps have associated with them
specific nodes (some or all of those associated with the job), tasks, and a task
distribution (cyclic or block) over the nodes.

The management of job steps is considered a component of the job manager.
Supported job step functions include:

Register Job Step

Get Job Step Information

Run Job Step Request

Signal Job Step

Job step information includes task distribution (cyclic or block) across the al-
located nodes, processors required per task, list of nodes (entire set or subset
of those allocated to the job), and a credential used to bind communications
between the tasks across the int6rconnect. The s lurmctld will construct this
credential, distribute it the the r‘elevant slurmd daemons, and send it to the
srun initiating the job step.

2.4 Fault Tolerance
A backup s lurmctld if one is configured, will periodically ping the primary
slurmctldShould the primary slurmct Id cease responding, the backup will load
state information from the last slurmctld state save, and assume control. All
slurmd daemons will be notify of the new controller location and be requested to
upload current state information to it. When the primary s lurmctld is returned
to service, it will tell the backup slurmctld to save state and terminate. The
primary will then load state, assume control, and notify slurmd daemons.

SLURM utilities and the APIs will read the /etc/slrumd.conf files and ini-
tially try to contact the primary slurmctldShould that attempt fail, an attempt
will be made to contact the backup slurmctld before terminating.

3 Slurmd
The slurm daemon, slurmd is a multi-threaded daemon for managing user jobs
and monitoring system state. Upon initiation it will read the /etc/slurmd.conf

18

file, capture system state, attempt an initial connection to the SLURM con-
troller, and subsequently await requests. It will service requests for system
state, accounting information, job initiation, job state, job termination, and job
attachment. On the local node it will offer an API to translate local process
id’s into slurm job id’s.

It’s most common action will be to report system state upon request. Upon
slurmd startup and periodically thereafter, it will gather the processor count,
real memory size, and temporary disk space for the node. Should those val-
ues change, the controller will be notified. Another thread will be created to
capture CPU, real-memory and virtual-memory consumption from the process
table entries. Differences in resource utilization values from one process table
snapshot to the next will be accumulated. slurmd will insure these accumu-
lated values are not decremented if resource consumption for a user happens
to decrease from snapshot to snapshot, which would simply reflect the termi-
nation of one or more processes. Both the real and virtual memory high-water
marks will be recorded and the integral of memory consumption (e.g. megabyte-
hours). Resource consumption will be grouped by user ID and SLURM job ID
(if any). Data will be collected for system users (root, ftp, ntp, etc.) as well as
customer accounts. The intent is to capture all resource use including kernel,
idle and down time. Upon request, the accumulated values will be uploaded to
slurmctld and cleared.

slurmd will accept requests from srun and the controller to initiate and
terminate user jobs. The initiate job request will contain at least: real and
effective user IDS, environment variables, working directory, task numbers, job
credential, interconnect specifications and authorization, core paths, process
limits (?), slurm id, and the command line to execute. slurmd will execute the
prolog script (if any), reset its session ID, and then initiate the job as requested.
It will record to disk the SLURM job ID, session ID, process ID associated with
each task, and user associated with the job. In the event of slurmd failure, this
information will be recovered from disk in order to identify a specific job. This
job identity will be used in communications with the SLURM controller. We can get

The job termination request will contain the SLURM job ID and a delay this job reg-
period. Jobs will have an API made available to register with slurmd exactly istration and
which process(s) should be sent what signals with how much lead time prior signaling code
to termination. slurmd will send the requested signal (or SIGNXCPU if none from DPCS.
specified) to the identified process(es) associated with the SLURM job (or all -MJ
processes associated with that session ID or process tree by default), sleep for
the delay specified, and send SIGKILL to all of the job’s processes. If the
processes do not terminate, SIGKILL will be sent again. If the processes still
do not terminate slurmd will notify the slurmctld, which will log the event and
set node’s state to DRAINED. After all processes terminate, slurmd will execute
the epilog program (if any).

19

4 Command Line Utilities

4.1 scancel
scancel will prematurely terminate a queued or running job or job step. If the
job is in the queue, it will just be removed. If the job is running, it will be
signaled and terminated as described in the slurmd section of this document.
It will identify the job(s) to be terminated through input specification of: user
name, SLURM job ID and/or job step ID. If no jobspecification is supplied] the
user will be asked for one. If the username is supplied] all jobs associated with
that user will be terminated. If a job ID is supplied, all job steps associated
with the job will be terminated as well as the job and its resource allocation.
If a job ID and job step ID are supplied] only that job step will be terminated.
scancel can only be executed by the job’s owner or user root.

4.2 scontrol
scontrol is a tool meant for SLURM administration by user root. It provides
the following capabilities:

Reconfigure - Cause slurmctld to re-read its configuration file.

Show build parameters - Display the values of parameters that SLURM
was built with such as locations of files and values of timers. This can
either display the value of specific parameters or all parameters.

Show job state - Display the state information of a particular job or all
jobs in the system.

Show job step state - Display the state information of a particular job step
or all job steps in the system.

Show node state - Display the state and configuration information of a
particular node, a set of nodes (using regular expressions to identify their
names, or all nodes.

Show partition state - Display the state and configuration information of
a particular partition or all partitions.

Update job state - Update the state information of a particular job in the
system. Note that not all state information can be changed in this fashion
(e.g. the nodes allocated to a job).

Update node state - Update the state of a particular node. Note that not
all state information can be changed in this fashion (e.g. the amount of
memory configured on a node). In some cases, you may need to mod-
ify the SLURM configuration file and cause it to be re-read using the
”Reconfigure” command described above.

20

0 Update partition state - Update the state of a partition node. Note that
not all state information can be changed in this fashion (e.g. the default
partition). In some cases, you may need to modify the SLURM config-
uration file and cause it to be re-read using the ”Reconfigure” command
described above.

4.3 squeue
squeue will report the state of SLURM jobs. It can filter these jobs input
specification of job state (RUN, PENDING, etc.), job ID, user name, and job
name. If no specification is supplied, the state of all jobs will be reported.

squeue can also report the state of SLURM partitions and nodes. By default,
it will report a summary of partition state with node counts and a summary of
the configuration of those nodes (e.g. ”PartitionName=batch Nodes=lx[1000-
99991 RealMemory=2048-4096 IdleNodes= 1234 .. .”).

4.4 srun
srun is the user interface to accessing resources managed by SLURM. Users
may utilize srun to allocate resources, submit batch jobs, run jobs interactively,
attach to currently running jobs or launch a set of parallel tests (job step) for
a running job.. srun supports a full range of options to specify job constraints
and characteristics, for example minimum real memory, temporary disk space,
and cpus per node, as well as time limits, stdin/stdout/stderr handling, signal
handling, and working directory for job. The full range of options are detailed
in table 1.

The srun utility can run in four different modes: interactive, in which the
srun process remains resident in the user’s session, manages stdout/stderr/stdin
and forwards signals to the remote tasks, batch in which srun submits a job
script to the SLURM queue for later execution, allocate in which srun requests
resources from the SLURM controller and spawns a shell with access to those
resources, and finally attach in which srun will attach to a currently running job
and display stdout/stderr in real time from the remote tasks, forward signals
from the user’s terminal and so on.

An interactive job may also be forced into the “background” with a special
control sequence typed at the user’s terminal. This sequence will cause another
srun to attach to the running job while the interactive srun terminates. Output
from the running job will subsequently be redirected to files in the current
working directory and stdin will be copied from /dev/null. A backgrounded
job may be reattached to a user’s terminal at a later time by running

srun --attach j o b i d

at any time, though the remote srun will not be terminated as the result of an
at tach.

21

Option Arg type Description
~. submit a batch script to job queue batch
nprocs
cpus-per-task
nodes
partition
timelimit
cddir
immediate
overcommit
label
distribution
job-name
output
input
error
signal- op ts (?)
allocate
attach
mincpus
m e m
tmp
constraint
nodelist
debug
verbose
version

boolean
number
number
number
string

number
string

boolean
boolean
boolean
string
string
string
string
string
string

boolean
string

number
number
number
string
string

boolean
boolean

number of processes to run.
number of cpus needed per process.
number of nodes on which to run.
partition name in which to run.
wall clock timelimit for job.
working directory of remote processes
exit if resources are not immediately available
allow more than 1 process per cpu
prepend task number to lines of stdout/err
distribution method for processes (blocklcyclic)
name of job
location of stdout redirection
location of stdin redirection
location of stderr redirection
signal handling options (?)
allocate nodes only
attach srun to a running job
minimum number of cpus per node
minimum amount of real memory per node
minimum amount of temporary disk space
arbitrary feature constraints
request a specific set of hosts
print debug output
verbose operation

boolean print srun version and exit

5

Table 1: srun options

Job Initiation Design
There are three modes in which jobs may be run by users under SLURM. The
first and most simple is interactive mode, in which stdout and stderr are dis-
played on the user’s terminal in real time, and stdin and signals may be for-
warded from the terminal transparently to the remote tasks. The second is batch
or queued mode, in which the job is queued until the request for resources can
be satisfied, at which time the job is run by SLURM as the submitting user. In
allocate mode, a job is allocated to the requesting user, under which the user
may manually run job steps via a script or in a subshell spawned by srun.

Figure 4 gives a high-level depiction of the connections that will occur be-
tween SLURM components during a general interactive job startup. s run will
request resources from the s lurmctld which will respond with the list of allo-
cated nodes, timelimit, job credential, etc. if the request is granted. srun then

22

0 ephemeral port 0 '"known" port

Figure 4: Job initiation connections overview. 1. srun connects to s l u m c t l d request-
ing resources. 2. s l u m c t l d issues a response, with list of nodes and job credential. 3.
srun opens a listen port for every task in the job step, then sends a run job step request
to slurmd. 4. slurmd's initiate job step and connect back to srun for stdout/err.

initializes listen ports for each task and sends a message to the slurmd's on the
allocated nodes requesting that the remote processes be initiated. The slurmd's
begin execution of the tasks and connect back to srun for stdout and stderr.
This process and the other initiation modes are described in more detail below.

5.1 Interactive job initiation
Interactive job initiation is illustrated in figure 5. The process begins with a
user invoking srun in interactive mode - in figure 5, the user has requested an
interactive run of the executable "fcmd" in the default partition.

After processing command line-options, srun sends a message to s lurmctld
registering a job step. This message simultaneously requests an allocation (or
job) and a job step. srun waits for a reply from slurmctld, which may not come
instantly if the user has requested that srun block until resources are available.
When resources are available for the user's job, s lurmctld replies with a job
credential, list of nodes that were allocated, cpus per node, and so on. srun
then sends a message each slurmd on the allocated nodes requesting that a job
step be initiated. The slurmd's verify that the job is valid using the forwarded
job credential and then respond to srun.

Each slurmd invokes a job thread to handle the request, which in turn
invokes a task thread for each requested task. The task thread connects back
to a port opened by srun for stdout and stderr. The host and port for this
connection is contained in the run request message sent to this machine by
srun. Once stdout and stderr have successfully been connected, the task thread
takes the necessary steps to initiate the user's executable on the node, initializing
environment, current working directory, and interconnect resources if needed.

Once the user process exits, the task thread records the exit status and sends
a task exit message back to srun. When all local processes terminate, the job
thread exits. The srun process will either wait for all tasks to exit, or attempt
to clean up the remaining processes when a single task exits based upon user

23

Figure 5: Interactive job initiation. srun simultaneously allocates nodes and a job
step from slurmctld then sends a run request to all slurmd’s in job. Dashed arrows
indicate a periodic request that may or may not occur during the lifetime of the job.

option. Regardless, once all tasks are finished, s r u n sends a message to the
s l u r m c t l d releasing the allocate‘d nodes, then exits with an appropriate exit
status.

When the s l u r m c t l d receives notification that s r u n no longer needs the
allocated nodes, it issues a request for the epilog to be run on each of the
slurmd’s in the allocation. As slurmd’s report that the epilog ran successfully,
the nodes are returned to the partition.

5.2 Queued (batch) job initiation
Figure 6 illustrates the initiation of a queued job in SLURM. The user invokes
srun in batch mode by supplying the --batch option to srun. Once user options
are processed, s r u n sends a batch job request to s l u r m c t l d that contains the
input/output location for the job, current working directory, environment, re-
quested number of nodes, etc. The s l u r m c t l d queues the request in its priority
ordered queue.

Once the resources are available and the job has a high enough priority,
s l u r m c t l d allocates the resources to the job and contacts the first node of the
allocation requesting that the user “jobr7 be started. In this case the job may
either be another invocation of s r u n or a j o b script which may have multiple
invocations of s r u n within it. The slurmd on the remote node responds to the
run request, initiating the job thread, task thread, and user script. An s r u n

24

srun slurmctld s l u d s l u d

Figure 6: Queued job initiation. slurmctld initiates the user’s job as a batch script
on one node. Batch script contains an srun call which initiates parallel tasks after in-
stantiating job step with controller. The shaded region is a compressed representation
and is illustrated in more detail in the interactive diagram (figure 5).

executed from within the script detects that it has access to an allocation and
initiates a job step on some or all of the nodes within the job.

and terminates. The job script continues executing and may initiate further job
steps. Once the job script completes, the task thread running the job script
collects the exit status and sends a task exit message to the s lurmct ld . The
s l u r m c t l d notes that the job is complete and requests that the job epilog be
run on all nodes that were allocated. As the slurmd’s respond with successful
completion of the epilog, the nodes are returned to the partition.

Once the job step is complete, the s r u n in the job script notifies the s l u r m c t l d

5.3 Allocate mode initiation
In allocate mode, the user wishes to allocate a job and interactively run job
steps under that allocation. The process of initiation in this mode is illustrated
in figure 7. The invoked s r u n sends an allocate request to s lu rmc t ld , which,
if resources are available, responds with a list of nodes allocated, time limit,
etc. The s r u n process spawns a shell on the user’s terminal with access to
the allocation, then waits for the shell to exit (at which time the job will be
considered complete).

25

Figure 7: Job initiation in allocate mode. Resources are allocated and srun spawns a
shell with access to the resources. When user runs an srun from within the shell, the
a job step is initiated under the allocation.

An s r u n initiated within the allocate subshell will recognize that it is running
under an allocation and therefore already within a job. Provided with no other
arguments, s r u n started in this manner will initiate a job step on all nodes
within the current job. However, the user may select a subset of these nodes
implicitly by using the srun --nodes option, or explicitly by specifying a relative
nodelist (- -nodel i s t= LO-51).

An srun executed from the subshell will read the environment and user
options, then notify the controller that it is starting a job step under the current
job. The s l u r m c t l d registers the job step and responds with a job credential.
srun then initiates the job step using the same general method as described in
the section on interactive job initiation.

When the user exits the allocate subshell, the original s r u n receives exit
status, notifies s l u r m c t l d that the job is complete, and exits. The controller
runs the epilog on each of the allocated nodes, returning nodes to the partition
as they complete the epilog.

26

[Node 0 I
Msg to 7,8,9,10,11,12

Node 1 Node 7

Node 8 Node 1 1

Msg to 11

1 Node 9 I I Node 10 I I Node 12 1
u-u u--

Figure 8: Sample communications with fanout = 2

6 Infrastructure: Communications Library
Optimal communications performance will depend upon hierarchical communi-
cations patterned after DPCS and GangLL work. The SLURM control machine
will generate a list of nodes for each communication. The message will then be
sent to one of the nodes. The daemon on that node receiving the message will
divide the node list into two or more new lists of similar size and retransmit the
message to one node on each list. Figure 8 shows the communications for a fan-
out of two. Acknowledgments will optionally be sent for the messages to confirm
receipt with a third message to commit the action. Our design permits the con-
trol machine to delegate one or more compute machine daemons as responsible
for fault-tolerance, collection of acknowledgment messages, and the commit de-
cision. This design minimizes the control machine overhead for performance
reasons. This design also offers excellent scalability and fault tolerance.8

*Arguments to the communications request include:
Request ID
Request (command or acknowledgment or commit)

List of nodes to be effected

Fan-out (count)

27

Security will be provided by the use of reserved ports, which must be opened
by root-level processes. SLURM daemons will open these ports and all user
requests will be processed through those daemons.

6.1 Infrastructure: Other
The state of slurmctld will be written periodically to disk for fault tolerance.
Daemons will be initiated via i n i t t a b using the respawn option to insure their
continuous execution. If the control machine itself becomes inoperative, its
functions can easily be moved in an automated fashion to another computer.
In fact, the computer designated as alternative control machine can easily be
relocated as the workload on the compute nodes changes. The communications
library design is very important in providing this flexibility.

A single machine will serve as a centralized cluster manager and database.
We do not anticipate user applications executing on this machine.

The syslog tools will be used for logging purposes and take advantage of the
severity level parameter.

7 Development Plan
The design calls for a four-phase development process. Phase one will develop
infrastructure: the communications layer, node status information collection
and management. There will be no development of a scheduler in phase one.

Phase two will provide basic job management functionality: basic job and
partition management plus simpfy scheduling, but without use of an intercon-
nect.

Phase three will add Quadrics Elan3 switch support and overall documen-
tation.

Phase four rounds out S L U M with job accounting, fault-tolerance, and full
integration with DPCS (Distributed Production Control System).

Commit of request to be required (Yes or No or Delegate node receiving message)

Acknowledgment requested to node (name of node or NULL)
Acknowledgment requested to port (number)

28

References
[l] Moe Jette et al. Survey of batch/resource management-related system soft-

ware. Technical report, LLNL, 2002.

30

